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By using, as a model, an analytical equation of state which describes a system
that can exist in a liquid or vapor phase, scaling properties regarding the critical
temperature and the ‘‘flash’’ temperature were found. The ‘‘flash’’ temperature
is defined as the highest temperature at which a self-bound system can exist
in hydrostatic equilibrium. The ‘‘flash’’ temperature can provide an alternate
natural dimension-dependent scale of temperature, other than the critical tem-
perature.
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We consider a simple equation of state (EOS) derived from a Skyrme-type
interaction [1]. Such an interaction is short-ranged and typically used in
nuclear physics. Without any loss of generality in our study, it is particu-
larly well suited for our purposes since it allows an analytical derivation of
the scaling properties:

p=−aor2+2a3r3+rkBT. (1)

This equation shows explicitly a cubic dependence on the density r, in
much the same way as for the van der Waals fluid. This form for the EOS
is typical of a system that can exist in a liquid or vapor phase, and suggests
the existence, at low density, of a line of first-order liquid-vapor phase



transition in a p versus T phase diagram, ending up at a critical point, where
the transition is continuous. The temperature Tc associated with this critical
point is an upper bound for the range of temperatures in which the two
phases coexist. Many other models for nuclear matter have been studied
[2–4], all of them exhibiting an EOS with the same van der Waals fluid-
like behavior.

We are aware that the use of a mean-field approach (MFA) has as a
drawback that the actual spatial dimension in which the system is embedded
loses in part its specificity, as far as the critical behavior is concerned. The
critical exponents have the same values in all dimensions, and the equations
of state collapse into one single curve in the neighborhood of criticality,
when rescaled with the critical parameters. For a simple van der Waals gas,
this collapse occurs over the entire range of the thermodynamic variables,
as can be trivially verified [5]. The same is true for the analytically soluble
model with Skyrme-type interactions mentioned above.

Mean-field phase diagrams can be valuable, even below the upper
critical dimension of a model, to explore its regions of metastability. As is
well known from the study of fluids, a physical system can get trapped in a
local minimum of its free energy, from which it escapes only after a finite
time. In an MFA the positions of these local minima are bounded in the
phase diagram by the spinodal curves, which lie inside the region of phase
coexistence. One usually considers the isothermal, for quenches through
processes at constant temperature, and adiabatic (or isoentropic) spinodals,
which can be formally determined by the solutions of “p/“r=0, keeping
constant the appropriate thermodynamic variable. The processes of frag-
mentation and super-heating are associated with the regions “p/“r < 0 and
“p/“r > 0, respectively. Since we will be addressing in this paper only iso-
thermal quenches, these derivatives will be taken at constant temperature.

A particularly interesting region still inside the coexistence region is
that in which a hydrostatic equilibrium (p=0) is still possible and the
nuclear matter incompressibility,

K(T)=
“p
“r
:
p=0

(2)

can be calculated. This region is bounded by 0 < T < Tfl and rfl < r < r0,
where the point (rfl, Tfl) is obtained as the solution to p=“p/“r=0 and
is known as the ‘‘flash’’ point. This point represents the smallest density
and the highest temperature at which a self-bound system can exist in
hydrostatic equilibrium, and belongs by definition to a spinodal. It can
thus provide an alternate natural dimension-dependent scale of tempera-
tures, other than the critical temperature. It is worth mentioning at this
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point that critical behavior at spinodal points has been found in the study
of mean-field versions of classical models in condensed matter, such as the
inconspicuous Ising model [6].

Here we proceed to the discussion regarding scaling with critical and
flash parameters through the simple analytical EOS, given by Eq. (1) [1].
Although derived for a 3D system [7], a straightforward reproduction of
that reasoning can be used to show that it has the same functional form in
every spatial dimension. The relation between its coefficients and those of
the interaction potential, however, are dimension-dependent. These coeffi-
cients have dimensions [a0]=M−D+1 and [a3]=M1−2D. The density at
saturation of the nuclear matter, defined as the largest density for which
hydrostatic equilibrium is still possible, is obtained as a solution to p(r0)
=0, leading to r0=

a0
4a3
[1+`1−(8a3kBT)/a

2
0]. The incompressibility (at

nuclear saturation) is obtained from Eq. (2) yielding

K(T)=
a20
4a3
51+=1−8a3kBT

a20
−
8a3kBT
a20
6 (3)

and K(0)= a20
2a3

. The reduced incompressibility can thus be written as

K(T)
K(0)

=
1
2
51+=1−8a3kBT

a20
−
8a3kBT
a20
6 . (4)

We begin by deriving a law of corresponding states for this EOS by
rescaling the thermodynamical variables with their critical values. The
critical point at which the liquid-vapor coexistence phase disappears and
matter starts to be described as a gas is obtained via

“p
“r
:
r=rc

=
“
2p
“r2
:
r=rc

=0 (5)

leading to

rc=
ao
6a3
, kBTc=

a20
6a3
, pc=

a30
108a23

(6)

with

a0=
kBTc
rc
, a3=

kBTc
6r2c
. (7)
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Substituting the values of a0 and a3 into Eqs. (1) and (4) one obtains

pŒ=rŒ3−3rŒ2+3rŒTŒ (8)

and

K(T)
K(0)

=
1
2
51+=1−4

3
TŒ−
4
3
TŒ6 . (9)

where pŒ=p/pc, rŒ=r/rc, and TŒ=T/Tc.
In this particular case, pc/kBTcrc=1/3, near the 3/8 value obtained

for the van der Waals gas. Equation (8) is an expression of a law of corre-
sponding states valid across different spatial dimensions.

Now, let us show that a similar law can be obtained when the vari-
ables are rescaled through their ‘‘flash point’’ values. At this point,

“p
“r
:
r=rf

=p(rf)=0. (10)

Imposing the above conditions on Eq. (l) we find

rf=
a0
4a3
, kBTf=

a20
8a3
, pf=0 (11)

with

a0=
2kBTf
rf
, a3=

kBTf
2r2f
, (12)

which when substituted back into Eqs. (l) and (4) lead to

p*=r*3−2r*2+r*T*, (13)

and

K(T)
K(0)

=
1
2
[1+`1−T*−T*]. (14)

where

p*=p/kBrfTf, r*=r/rf, T*=T/Tf. (15)

Here, p* does not scale with the ‘‘flash’’ parameter pf which is identically
zero by construction, but with kBrfTf instead.
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We can see in this case that Tc/Tf=
4
3 . Equations (9) and (14) relate

the incompressibility curves in terms of different criticalities. Therefore, we
found that the flash temperature can provide an alternate natural dimension-
dependent scale of temperature, other than the critical temperature.
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